
Abstract

Network infrastructure is composed of various devices
located either in the core or at the edges of a wide-area
network. These devices are required to deliver high
transaction throughput where a transaction may involve
processing one protocol data unit (PDU). Throughput of
network infrastructure applications running on general-
purpose architecture based servers is constrained due to
excessive memory access latencies and limited memory
transfer bandwidth. In this paper, we analyze the memory
access characteristics of three network infrastructure
applications: IP forwarding, HTTP proxying, and RTP
streaming. In addition, we analyze the latencies of these
network applications with respect to three types of data
transfers: memory-to-CPU, memory-to-memory, and
memory-to-network. We calculate the optimistic upper-
bounds on throughput for these applications on general-
purpose computing platforms.

Keywords: Memory performance, memory access
characteristics, network infrastructure applications, IP
forwarding, HTTP proxying, and RTP streaming.

1 Introduction and Motivation

A wide-area network infrastructure generally consists
of two types of devices depending on their location
within such a network: edge devices and core devices.
Typical core devices include switches and routers while
edge devices include bridges, gateways, layer four
switches, proxy servers, server accelerators, web servers,
and streaming servers. All of these devices are required
to deliver high throughput for network transactions that
they process. The nature of these transactions differs
from one network infrastructure device to another. For
instance, a transaction at a router involves accepting an
incoming IP packet, extracting its destination IP address,
determining an output port by searching through its
routing table, updating the IP header, and finally
forwarding the packet to an output port. However, a
transaction at a proxy server may involve accepting an
HTTP request from a client, searching for the required

document in its local storage, and delivering that
document either from local storage or fetching it from the
original web server and then delivering it to the end-user.
Although these two are different types of transactions,
there are some important similarities among these and
other network infrastructure applications: (1) each
network transaction is independent of the other; (2) both
applications demand high transaction throughput; and (3)
large volumes of protocol data units (PDUs) transfer in
and out of the system with minimal computation
requirements. From an application perspective, data
transfers among CPU, network, and I/O devices are
essentially memory accesses. Therefore, high throughput
in terms of transaction rate as well as data transfer in and
out of a network device is dependent on memory access
characteristics of the application and overheads introduced
by the architecture while transferring large volumes of
PDUs.

Traditionally network infrastructure is built using special-
purpose architectures that help achieve high transaction
throughput for specific applications. However, with
exponentially increasing performance of general-purpose
processors at comparatively low costs, there is renewed
interest in utilizing general-purpose computing platforms
for building network infrastructure [8]. Also, network
infrastructure is increasingly becoming sophisticated and
provides several value-added services in addition to
simple switching and routing. Some of these services
include overlay networking [3], content networking [2],
layer four switching [1], and proxy caching [9]. Unlike
simple routing and switching, these services require many
more CPU cycles per transaction. As performance (in
terms of clock speeds) of general-purpose processors
continue to double roughly every eighteen months, using
them to build value-added network infrastructure is
becoming increasingly feasible. A number of commercial
network infrastructure devices are implemented on
general-purpose server platforms. For instance, Microsoft
Proxy Server [12] is implemented on Windows 2000
Server platforms and can be used as an edge device.
Similarly, Lucent Layer 4/7 switch architecture [1] uses
general-purpose Unix/PC based platform.

Memory Access Characteristics of Network Infrastructure Applications

Abdul Waheed
Computer Engineering Department

King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia

E-mail: awaheed@ccse.kfupm.edu.sa

Performance of general-purpose computing platform
based network infrastructure is constrained by the
discrepancy between processor and memory
performance. While processor speed is increasing
exponentially, the memory access latency is not reducing
at the same rate. This discrepancy makes it exceedingly
hard for an application developer to keep the processor
busy during every clock cycle to realize its full
performance potential. Since general-purpose computer
architecture is based on multiple levels of memory
hierarchy, it is not possible to keep the processor busy
unless all memory accesses hit either in CPU registers or
on-chip caches. Limited bandwidth of system and I/O
buses further constrain the maximum data throughput
possible from these architectures. In addition to these
memory performance constraints, achieving peak
processor performance becomes even harder due to
system software overheads. Thus using a general-
purpose processor based server for building network
infrastructure devices has great potential in terms of cost-
effectiveness and enabling intelligent network services
while there are significant technical challenges that may
inhibit the possibility of achieving high throughput. In
this paper, we specifically analyze the severity of the first
two challenges for network applications: cache
performance overhead and overhead of data movement
across system and I/O buses. Although the analysis of
software overhead is very important for obtaining high
throughput, it is beyond the scope of this paper to allow
ourselves to focus on memory access characteristics.

Memory performance characterization and evaluation
is traditionally related to designing new processor
architectures. Trace-driven simulation technique is
widely used for experimenting with various types of
cache and memory architectures. With the advent of on-
chip performance counters, application developers can
also measure cache and memory performance of their
software. But increasing complexity of processor
architectures, in terms of out-of-order execution and
overlapping computation with memory stall cycles to
hide memory access latency, complicates the use of low-
level measurements for memory performance analysis or
tuning of a software application. Although generally this
techniques is unattractive, some memory performance
measurement based analysis and tuning studies have be
conducted on high-end systems for computational
applications (see for example [11]). Sohoni et al. [10]
analyze the characteristics of memory performance of
streaming media applications. Their measurement and
trace-driven simulation based study of streaming media
player applications indicate that the cache miss ratio for
such applications is lower than the cache miss ratio of
computational applications in SPEC benchmark suite.
This is due to streaming media algorithms that access
contiguous blocks of data resulting in high spatial
locality despite poor temporal locality. Kumann et al. [6]
describe a benchmark that can be used for sequential and
parallel systems for measuring data transfer bandwidth.
In order to avoid the limitations and inaccuracies of

measurement and trace-driven simulation techniques, we
use simple analytical calculations in accordance with the
memory access characteristics of three selected network
infrastructure applications: IP packet forwarding, HTTP
proxying, and Real Time Protocol (RTP) streaming. Using
this technique, we first calculate best, worst, and average
cache overhead in terms of memory stall cycles that may
result for the applications of our choice. Subsequently, we
calculate the latencies for a transaction for each of these
applications in terms of number of data movements and
bandwidths of internal and external buses. These
calculations can be further simplified to estimate the
optimistic upper-bounds on throughput for the above three
applications on various general-purpose processor based
architectures.

In Section 2, we outline our methodology to analyze
memory accesses for network applications on a general-
purpose computing platform. We apply this methodology
to three selected network infrastructure applications in
Section 3. We conclude in Section 4 with a discussion of
the contributions of this work and future course of this
research effort.

2 Analysis of Memory Access Latencies

Figure 1 illustrates a typical general-purpose
architecture that can be used for high-throughput network
infrastructure devices. Hardware resources on such a
server include: processor, on-chip and/or off-chip low
latency caches, main memory, one or more disks, and one
or more network interfaces. These hardware resources are
connected to one another through a higher-bandwidth
internal system bus, a lower-bandwidth I/O bus, and a bus
controller. In term of data flow, both within as well as
outside the server, there are four data transfer paths. These
four paths include: (1) CPU-memory data transfer of
operands for operations that utilize CPU time for
arithmetic and/or logical instruction executions; (2)
memory-memory data transfers (that go through the CPU)
for copying blocks of data from one network protocol
layer to another; (3) disk-memory data transfers through
DMA for retrieving or storing large data; and (4) network
interface-memory data transfers through DMA for
incoming or outgoing data through the network. While the
first and second types of data transfers use internal bus, the
third and fourth types of transfers utilize I/O bus.

Transactions performed by a typical network
infrastructure server can be characterized by three
activities: (1) reading an incoming transaction request
from a memory location (network buffer) through a
network interface; (2) request processing that require CPU
time; and (3) writing the response to a memory location (a
network buffer) that results in outgoing data transfer
through network interface. These activities are not
necessarily performed in the same order. Also, one
transaction may involve multiple operations of each one of
the above three general categories of operations. The
above discussion of hardware and software resources of a

typical server allows us to consider all non-CPU
operations as memory accesses of three types: (1)
memory-CPU (or cache) transfers; (2) memory-memory
transfers; and (3) memory-I/O and/or memory-network
transfers. Our objective in the rest of this section is to
determine latencies due to each of these memory access
operations.

2.1 Memory-CPU Transfers
Parts of a network transaction utilize CPU cycles for

functions such as: decrementing time-to-live of an IP
packet, computing checksum for an IP packet header,
computing retransmission time-out value for a TCP
segment, computing checksum of a TCP segment, etc.
Not all of these computations require transferring every
word of the PDU to the CPU from memory, in a
sequential order. Some of these functions require
updating a protocol header, which consists of a typically
small number of bytes. However, some operations such
as checksum calculation of an entire PDU (e.g., a TCP
segment) require sequential access to a contiguous block
of memory locations. Due to multiple levels of memory
hierarchy, these contiguous data blocks are first
transferred to cache from where CPU can access them.
This process involves several memory stall cycles that
contribute to the transaction latency. Memory stall cycles
can be measured in terms of miss rate for an application
[5], such that:

Memory stall cycles = (IC) (AR) (MR) (MP) (1)
where IC represents instruction count, AR specifies

memory access rate in terms of the number of memory
accesses per instruction, MR is the miss rate, which is the
ratio of cache misses to memory accesses, and MP
specifies miss penalty in terms of clock cycles.
Considering only data cache misses, we can further

simplify the expression for memory stalls by assuming
that each instruction includes one memory access, that is
AR = 1. Then we can re-write the above expression as:

Memory stall cycles = (IC) (MR) (MP) (2)
Using this expression, we can calculate the memory stall

cycles through measurements to determine IC and MR
while MP is known for every level of memory hierarchy.
In order to get further insight into memory stalls, we can
use the general observation that access to each subsequent
level of memory hierarchy is slower by one order of
magnitude. If access to L1 cache takes one clock cycle, we
can assume that penalty for an L1 cache miss will be of the
order of 10 clock cycles, which is true for several
processors. Since miss ratio MR is dependent on
application characteristics, we can further analyze it by
focusing on network applications. In the worst case, MR =
1 and using MP = 10, the number of memory stall cycles
will be 10 times of IC (i.e., ten stalls per instruction),
which is quite high. However, the situation is not as bad
for network applications. Unlike computational
applications, network PDUs do not contain repeatable
data. Therefore, temporal locality does not exist in such
data. However, contiguous data are accessed as a block
(with a stride of 1) and spatial locality does exist. For
instance, if an L1 data cache consists of 8 words (or 32
bytes), loading one word to a cache line will also bring 7
contiguous words into the cache that are to be used
subsequently. Thus effective value of MR = 1/8 or 12.5%
in this case. Memory stall cycles will be very close to the
instruction count in such a case. Generally, MR = 1/(L/W)
= W/L where W is the width of each memory access (in
bytes) and L is the length of each cache line (also in terms
of bytes).

One important issue that needs to be analyzed is the role
of caches for high-throughput network applications. It is

Figure 1: Architecture of a typical server built on a general-purpose platform with four data transfer paths.

Processor

On-chip cache

Off-chip cache

Internal (CPU-memory) bus
Bus/DMA

Main
memory

I/O bus

Disk controller Network
interface

Disk

Disk

Network
interface

Memory-memory transfers via CPU

Network transfers via DMA
Disk transfers via DMA

Cache-memory transfers

controller

commonly believed that due to lack of temporal locality
in network PDUs, data caches introduce unnecessary
delays. It will be useful to calculate the exact amount of
overhead introduced due to caches. One way to specify
this overhead is to calculate the ratio of execution times
(in terms of clock cycles) with and without a cache (or
with no memory stall cycles). Execution time without
cache can be expressed as:

(Execution time)no-cache = (IC) (CPI) (CC), (3)

where CPI represents average clock cycles per
instruction and CC is the clock cycle time. Execution
time with cache will result in memory stalls and can be
given as:

(Execution time)with-cache
= (IC) (CPI) (CC) {1 + (MR) (MP)} (4)

Thus the overhead of having a cache for a network
application can be calculated as a ratio of two execution
times as:

Cache overhead = 1 + (MR) (MP) = 1 + (10) (MR) (5)
In the worst case, MR = 1 and cache will result in 11

times higher latency than an architecture that simply uses
a fast memory without a cache. This rare case may occur
when stride is such that every memory access results in a
cache miss. Under such a worst-case scenario, latency of
transferring a PDU from memory to CPU is determined
by the bandwidth of the internal bus. The best case when
MR = 0 is trivial and corresponds to transactions that do
not involve any memory accesses. In such cases, cache
does not introduce any additional latency. A more
practical case occurs when MR is non-zero and typically
close to 0.1. In such cases, the product (MR)(MP)
approaches 1. That is, in practice latency introduced by a
cache is as much as the ideal execution time without
memory stalls. Therefore, using a general-purpose
processor based server architecture may restrict the
average throughput to half of what would have been
possible in a special-purpose architecture without a data
cache.
2.2 Memory-Memory Transfers

Protocol processing typically involves copying a block
of contiguous (stride = 1) memory locations to a different
location to pass a protocol data unit to the subsequent
layer. If there is no contention for the bus, such transfers
are simply limited by the bandwidth of internal bus. If the
internal bus has a bandwidth of Bi MBytes/sec, the
latency to copy a block of S bytes is given as:

Memory-memory latency = 2S/Bi µsec. (6)

Current generation of general-purpose processor based
server architectures are capable of transferring multiple
GBytes/sec over the internal bus. For instance, a 2 GHz
Pentium IV processor can allow a minimum of 4 GBytes/
sec of data transfer over its internal bus. This is
equivalent to 32 Gbits/sec of data transfer rates within
the server. Theoretically, such data transfer speeds can
allow to build a software router that can provide more

than 30 independent channels, each of 1 Gbits/sec
capacity.

2.3 Memory-I/O and Memory-Network
Transfers

Both I/O and network operations involve data
movement over the I/O bus through a bridge. Therefore,
both types of operations are similar from data transfer
perspective. Every transaction starts and ends at network
interface card (NIC), which is connected to the I/O bus.
The I/O bus is typically slower compared to the internal
bus. If bandwidth of the external bus is Be MBytes/sec,
latency to pass a PDU of S bytes is given as:

Memory-network latency = S/Be µsec. (7)

Both I/O and network operations use Direct Memory
Access (DMA) controller to transfer data to or from
memory without involving the processor.

3 Characteristics of Selected Applications

We apply the memory access latency calculation
methodology developed in Section 2 to three network
applications: IP forwarding, HTTP proxying, and RTP
streaming. We assume that these applications are executed
on a general-purpose processor based server, which is
depicted in Figure 1. In each case, our goal is to identify
the frequency of each of the three types of data transfer
operations for every transaction. We assume that the
latency of transaction is a sum of following latencies:
processing by CPU, memory-CPU transfer, memory-
memory copy, memory-NIC transfer, and memory-I/O
transfer.

3.1 IP Packet Forwarding
A router is typically used in network core to perform

two functions: (1) execution of a routing algorithm to
periodically update its routing table; and (2) forwarding an
incoming IP packet to a selected output port according to
the information provided by its routing table. Execution of
the routing algorithm is an infrequent operation compared
to forwarding of IP packets, which should ideally be
implemented at a level of throughput that matches the data
rate of physical medium. Therefore, we focus on the IP
packet forwarding part rather than routing function to
identify the types and frequencies of data transfer
operation that may limit the throughput.

An IP packet forwarding transaction involves following
functions:
1. Copying incoming PDU to a buffer in the IP layer. This

results in a NIC-memory transfer of entire PDU.
2. Examination of IP header to extract the destination IP

address. This operation will result in copying IP header
from memory to cache through a compulsory cache
miss. Due to typically small size of the IP header (typi-
cally 20 bytes), it can completely fit in a cache line. A
hash function is computed corresponding to the desti-

conditions for subsequent analysis as our goal is to achieve
maximum throughput from the server.

A typical HTTP proxy transaction consists of two parts:
request and response. Request part consists of a small
HTTP command while the response consists of a header
and the requested document. We can ignore the request
part as its impact on overall transaction throughput is
minimal. The rest of the transaction involves following
operations:
1. Preparation of sending requested document in an

HTTP response with a header. This response needs to
be copied into a TCP buffer from HTTP. This process
involves one memory-memory copy.

2. Calculation of TCP segment checksum requires entire
segment to visit CPU (word-by-word, sequentially)
through cache. Thus there is one memory-CPU data
transfer for entire transport layer PDU.

3. Transfer of TCP segment to an IP buffer. This opera-
tion results in a memory-memory transfer of entire
PDU.

4. Finally, the IP packet is copied to the network buffer on
the NIC resulting in a memory-NIC transfer.

These operation result in one memory-CPU transfer,
two memory-memory transfers, and one memory-NIC
transfer. Some CPU cycles are again needed for
processing the request and forming response. As stated
above, we can consider worst-case memory-CPU transfer
with MR = 1 and latency is same as memory-memory
transfer limited by the internal bus bandwidth. Using this
approximation, total latency for HTTP proxy transactions
that need highest throughput is given as:

THTTP = TCPU2 + 5S/Bi + S/Be (9)
where TCPU2 is the CPU time taken by the HTTP

transaction response in microseconds and S is the size of
PDU in bytes.
3.3 RTP Streaming

Compressed video and audio transmission over the
Internet uses streaming to allow the receiver to playback
chunks of entire document as they arrive. Real Time
Protocol (RTP) is used in conjunction with Real Time
Control Protocol (RTCP) to deliver streaming media
content. A streaming media server can store the content on
the disk in multiple chunks that can readily be streamed,
on demand from a client after appending an RTP header to
each one of them. Streaming is not restricted to
transmission of stored audio or video only. It may also
include live audio/video as well as other interactive
applications, such as video conferencing. However, to
keep our focus on high throughput streaming servers, we
consider the case where chunks of data are available in the
main memory from where they can be streamed to the
requesting client by appending RTP headers.

A complete streaming transaction has two parts: a
request and a response that streams multiple RTP packets.
As most of the data transfer is due to streaming of RTP
packets, the request part is simply irrelevant to our
calculations. Response part consists of several RTP packet

nation IP address to look-up the routing table to deter-
mine output port. This computation uses CPU cycles
and can re-use the IP header from cache.

3. Routing table look-up involves an access to memory.
However, over time, output ports corresponding to
frequently encountered destination addresses will
already be in cache. But in the worst case, this will
result in a cache miss and a memory-CPU transfer of
typically one word.

4. IP header has to be updated such that time-to-live
field is decremented and header checksum is recom-
puted. Since IP header is already in the cache, this
function does not involve any additional latency.

5. Finally, the updated PDU with new header is trans-
ferred to the appropriate network interface (based on
routing information) from IP layer. This result in a
memory-NIC transfer of the entire PDU.

To summarize the entire transaction in terms of data
transfers, there are two memory-NIC transfers of the
entire PDU. In addition, there are two cache misses
resulting in very small memory-CPU transfers. However,
compared to memory-memory transfers of entire PDUs,
these memory-CPU transfers incur very small overhead
of a few cycles only and can be ignored for all practical
purposes. Thus, the total latency of each IP packet
forwarding transaction can be given as:

TIP = TCPU1 + 2S/Be (8)

where TCPU1 is the CPU time taken by the transaction
in microseconds and S is the size of PDU in bytes.
3.2 HTTP Proxying

Compared to an IP packet forwarding server, an HTTP
proxy server can be much more complicated in terms of
possible variations for each of its transactions. An HTTP
proxy server is typically located at the edge of a network
between a client and a number of web servers. An HTTP
transaction from the user is intercepted by the proxy,
which either delivers the required document from its
local storage or contacts the origin server to get required
document, stores it locally, and delivers it to the
requesting client. In order to improve the response time,
proxy server can store frequently accessed documents in
main memory rather than disk. The decision of retrieving
the document from local storage or origin server depends
on the characteristics of the document accesses
(popularity) as well as cacheability characteristics of a
document determined, for instance, by their expiry dates.
For many practical cases, the document hit rate in local
storage is usually around 50% to 60% of all requested
documents. In addition, the response depends on the type
of request. For example, an HTTP GET request returns a
document. However, an IF-MODIFIED-SINCE (IMS)
may return the actual document if it were modified after
the specified time or it may simply return NotModified
status when the cached document is up-to-date.
Throughput is maximized when all requested documents
are hit in local storage in the main memory and all
transactions are HTTP GET requests. We assume these

transfer transactions. Each of these RTP streaming
transaction consists of following operations:
1. Formation of an RTP packet consisting of a header

and a chunk of compressed audio/video data frame.
This RTP packet is copied to the transport layer (often
using UDP rather than TCP). This involves one mem-
ory-memory data transfer.

2. Transport PDU is copied to an IP buffer. This opera-
tion involves one memory-memory data transfer of
entire PDU.

3. Finally, the IP packet is handed over to the NIC
resulting in on memory-NIC data transfer.

Thus a typical RTP streaming transaction involves two
memory-memory transfers and one memory-network
transfer. Therefore, latency of an RTP streaming
transaction can be expressed as:

TRTP = TCPU3 + 4S/Bi + S/Be (10)
where TCPU3 is the CPU time taken by the HTTP

transaction response in microseconds and S is the size of
PDU in bytes.

Transaction latencies can be used to calculate the
throughput (in MBytes/sec) for a server running one of
three selected applications. Server throughput is given by
S/T where S is the size of transaction data and T is the
latency of a transaction given by equations (8), (9), and
(10). Since we need to determine optimistic upper-bound
on throughput for three selected applications, we can
apply two approximations to the latency expressions: (1)
CPU usage latency compared to data transfer latency is
negligible and can be ignored; and (2) bus contention
from multiple simultaneously executed transactions do
not result in any additional overhead. Then optimistic
upper-bound on throughput for each application (in
MBytes/sec) is given as:

(Throughput)IP = Be/2 (11)
(Throughput)HTTP = BiBe/(5Be + Bi) (12)
(Throughput)RTP = BiBe/(4Be + Bi) (13)

We can use these upper-bounds on throughput for
several leading general-purpose microprocessors to

calculate peak possible data throughput. These
calculations are listed in Table 1. Using these calculations,
we can conclude that all of the leading microprocessor
based systems are capable of delivering more than 2
Gbytes/sec throughput for all three applications. For high-
end processors with high bandwidth internal system bus,
the external bus becomes a major bottleneck in delivering
high throughput. Despite this limitation, these peak
throughput estimates indicate that a general-purpose
processor based server can deliver high throughput
comparable to a server based on special-purpose
architectures. For instance, a software router based on
Intel Pentium IV processor can potentially provide at least
12 ports, each with a full-duplex data forwarding capacity
of 155 Mbits/sec.

4 Conclusions and Discussion

This paper makes two important contributions: (1) using
memory access characteristics of various network
applications, we show that in most cases cache latency is
typically less than twice the latency in ideal case that
incurs no memory stall cycles; and (2) we provide a
methodology of measuring throughput for three network
applications and show that in each case throughput is
limited by the internal and external bus bandwidths and
number of data transfer operations required by each
transaction. An important corollary of these conclusions is
that, under the assumptions of no significant CPU
overhead, no software overhead, and no contention for the
buses, we can determine optimistic upper-bounds on
throughput for selected network applications. Application
of these results indicate that we can potentially use state-
of-the-art general-purpose microprocessor based servers to
run several network infrastructure applications and still
meet their demands of high throughput. This conclusion is
contrary to the common belief that special-purpose
architectures with very small data caches are unavoidable
for network applications where data re-use (temporal
locality) is almost non-existent and caches hinder high
data throughput rather than helping this process as in case

Table 1. Peak throughput of three network applications for leading general-purpose processors with
different internal bus bandwidths. The external (e.g., PCI) bus is assumed to be 64 bits wide and operates

at 133 MHz with a 1066 MBytes/sec bandwidth.

Throughput of selected network applications

Processor

Internal bus
bandwidth
(MB/sec)

IP forwarding
(Mbits/sec)

HTTP
proxying

(Mbits/sec)

RTP
streaming
(Mbits/sec)

Intel Pentium IV 3.06 GHz 3200 4264 3199 3656

AMD Athlon XP 3000+ 2700 4264 2867 3306

MIPS R16000 700 MHz 3200 4264 3199 3635

Sun Ultraspac III 900 MHz 1200 4264 1567 1873

of computational applications. If fact, as Sohoni et al.
have noticed, cache miss rates for some network
applications may even be higher than typical compute-
intensive applications due to spatial locality of accessing
blocks of contiguous data [10].

Although the peak performance estimates presented in
Table 1 indicate that using a general-purpose processor
based server for high-throughput network infrastructure
devices is possible, there are some technical challenges
that remain to be overcome. Eliminating excessive
software overhead on a general-purpose computing
platform is a significant challenge. Software overhead
include: system call overhead, protocol processing
(especially transport layer protocols that use sliding
window for flow control), context switching overhead,
thread management overhead, and contention handling of
hardware resources. In addition, since a server is
essentially a piece of software written in a high-level
language, compiler plays an important role in obtaining
high performance. If compiler generated object code is
not optimized for a target architecture, it is impossible to
achieve close to peak data transfer bandwidth from the
system. Our analysis in this paper did not consider these
system software and compilation related overheads. We
are working on a modeling and measurement based
approach to incorporate the impact of these software
related overheads. A notable technique that has
addressed the issue of software overheads for network
applications is the Virtual Interface Architecture (VIA)
[4], which allows for by-passing network layers as
needed. However, this solution is limited to tightly-
coupled cluster computing systems and may not work for
a network server. Pradhan et al. [7] propose a cluster
based IP router that uses multiple general-purpose
computing platforms connected through a Myrinet switch
to form a high throughput server. This solution does not
address the problem of reducing overhead to achieve
close to the peak performance that each general-purpose
platform is capable of delivering. Instead, the solution
results in high throughput only because processing work
can be divided among multiple nodes, which may
continue to operate sub-optimally, through a high-speed
switch.

While the software overhead can inhibit potential high
throughput from a network server implemented on a
general-purpose platform, multithreading combined with
superscalar execution can work in favor of a transaction
processing application. Since all transactions are
mutually independent, if one transaction results in stall
cycles, CPU can switch to another thread that may be
executable to process a different transaction.
Multithreading can hide the latency due to memory
access overhead and can offset the degradation due to
memory stalls and software overheads.

Acknowledgements

Author would like to acknowledge the support of the
Computer Engineering Department of King Fahd

University of Petroleum and Minerals (KFUPM) for this
work.

References
[1] Bell Laboratories, Lucent Technology, “Layer 4/7 Switch

and other Custom IP Traffic Processing Using the NEPPI
API,” White Paper. Available on-line from: http://
www.bell-labs.com/project/webswitch/Gryph_im/APAH-
BFEK.pdf.

[2] Yatin Chawathe, Steven McCanne, and Eric Brewer, “An
Architecture for Internet Content Distribution as an Infra-
structure Service,” Technical Report, University of Cali-
fornia Berkeley, 2000.

[3] Yang-hua Chu, Sanjay G. Rao, and Hui Zhang, “A Case
for End System Multicast,” in Proc. of Sigmetrics 20002.

[4] D. Dunning, Greg Regnier, Gary McAlpine, Don Cam-
eron, Bill Shubert, Frank Berry, Anne Marie Merritt, Ed
Gronke and Chris Dodd, “The Virtual Interface Architec-
ture,” IEEE Micro, March/April 1998.

[5] John L. Hennessy and David A. Patterson, Computer
Architecture—A Quantitative Approach, Morgan Kauf-
mann, Third Edition, 2003.

[6] Ch. Kurmann and T. Stricker, “Characterizing Memory
System Performance for Local and Remote Accesses in
High-end SMPs, Low-end SMPs and Clusters of SMPs,”
in Proc. of the 7th Workshop on Scalable Memory Multi-
processors held in conjunction with the 25th Annual
International Symposium on Computer Architecture
ISCA98, Barcelona, Spain, June 27-28, 1998.

[7] Prashant Pradhan and Tzi-cker Chiueh, “Implementation
and Evaluation of QoS-Capable Cluster-Based IP Rout-
ers,” in Proc. of High Performance Networking and Com-
puting Conference (SC’02), Baltimore, MD, Nov. 2002.

[8] Xiaoh Qie, Andy Bavier, Larry Peterson, and Scott Kar-
lin, “Scheduling Computations on a Software-based
Router,” in Proc. of Sigmetrics 2001.

[9] Dongjun Shin and Kern Koh, “Optimizing Web Content
Delivery Using Web Server Accelerator,” in Proc. of the
Twenty-Fifth Australasian Computer Science Conference
(ACSC2002), Melbourne, Australia, 2002

[10] Sohum Sohoni, Rui Min, Zhiyon Xu, and Yiming Hu, “A
Study of Memory System Performance of Multimedia
Applications,” in Proc. ACM SIGMETRICS 2001, Cam-
bridge, MA, 2001.

[11] M. Zagha, B. Larson, Steve Turner, Marty Itzkowitz,
“Performance Analysis Using the Mips R10000 Perfor-
mance Counters,” in Proc. of Supercomputing ‘96, Pitts-
burgh, Pennsylvania, Nov. 1996.

[12] Microsoft. http://www.microsoft.com.

